Midterm solutions

1. Let G be a finite group and $H, K \triangleleft G$ such that $H \cap K=\{1\}$.
(a) Show that every element of $H K$ can be written uniquely as a product $h k$ for some $h \in H$ and $k \in K$.
(b) Show that $H K \cong H \times K$.
(c) Show that for an odd $n \geq 3, D_{4 n} \cong D_{2 n} \times \mathbb{Z}_{2}$.

Solution. (a) We know from proof of Lesson Plan 2.2 (xiii) that since $|H \cap K|=1$, we have $|H K|=|H||K|$, and the assertion follows. (Verify!)
(b) We know from 3.2 (iv) of the Lesson Plan that $H K \leq G$. Consider the map

$$
\varphi: H \times K \rightarrow H K:(h, k) \stackrel{\varphi}{\mapsto} h k .
$$

Then φ is clearly well-defined since for $\left(h_{1}, k_{1}\right),\left(h_{2}, k_{2}\right) \in H \times K$, we have:

$$
\left(h_{1}, k_{1}\right)=\left(h_{2}, k_{2}\right) \Longrightarrow h_{1}=h_{2} \text { and } k_{1}=k_{2} \Longrightarrow h_{1} k_{1}=h_{2} k_{2} .
$$

Moreover, since $H, K \triangleleft G$, for $h \in H$ and $k \in K$, we have

$$
h\left(k h^{-1} k^{-1}\right) \in H \text { and }\left(h k h^{-1}\right) k^{-1} \in K,
$$

and so it follows that

$$
h k h^{-1} k^{-1} \in H \cap K .
$$

As $H \cap K=\{1\}$, we have $h k h^{-1} k^{-1}=1$, which implies that

$$
\begin{equation*}
h k=k h, \forall h \in H \text { and } k \in K . \tag{1}
\end{equation*}
$$

Now, given $\left(h_{1}, k_{1}\right),\left(h_{2}, k_{2}\right) \in H \times K$, we have:

$$
\begin{array}{rlrl}
\varphi\left(\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)\right) & =\varphi\left(h_{1} h_{2}, k_{1} k_{2}\right) & & \\
& =h_{1} h_{2} k_{1} k_{2} & \text { (By definition of } \varphi .) \\
& =h_{1} k_{1} h_{2} k_{2} & & \text { (By (1) above.) } \\
& =\varphi\left(\left(h_{1}, k_{1}\right)\right) \varphi\left(\left(h_{2}, k_{2}\right)\right), &
\end{array}
$$

which shows that φ is a homomorphism. Furthermore, as φ is clearly bijective from 1 (a), we have $H K \cong H \times K$.
(c) Consider the subgroups $H=\left\langle r^{2}, s\right\rangle$ and $K=\left\langle r^{n}\right\rangle=\left\{1, r^{n}\right\}$ of $D_{4 n}=\langle r, s\rangle$. Then $H \triangleleft D_{4 n}$ since $\left[D_{4 n}: H\right]=2$ (Verify!) and furthermore, as $K=Z\left(D_{4 n}\right)$ (Verify!), we have $K \triangleleft D_{4 n}$. The assertion now follows from 1 (b).
2. Let G be a group and let $g, h \in G$ such that g and h both commute with $[g, h]=g h g^{-1} h^{-1}$. Then show that $(g h)^{n}=g^{n} h^{n}[h, g]^{n(n-1) / 2}$.
Solution. We show this by inducting on n. To begin with, we observe that since g, h both commute with $[g, h]$, it follows that:

$$
\begin{equation*}
h \text { and } g \text { both commute with }[g, h]^{-1}=[h, g] . \tag{2}
\end{equation*}
$$

When $n=2$, we have:

$$
\begin{array}{rlr}
(g h)^{2} & =g h g h & \\
& =g h g\left(h^{-1} g^{-1} g h\right) h & \text { (By definition of }[h, g]) \\
& =g\left(h g h^{-1} g^{-1}\right)\left(g h^{2}\right) & \text { (By basic group axioms.) } \\
& =g([h, g])\left(g h^{2}\right) & \\
& =g^{2} h^{2}[h, g] & \text { By definition of }[h, g] .) \\
& \text { (By (2).) }
\end{array}
$$

Thus, the assertion holds for $n=2$.
Now, assuming that the result holds for $n=k$, we prove the assertion for $n=k+1$. We have:

$$
\begin{array}{rlr}
(g h)^{k+1} & =g h(g h)^{k} & \\
& =g h\left(g^{k} h^{k}[h, g]^{k(k-1) / 2}\right) & \text { (By inductive hypothesis.) } \\
& =g h g\left(g^{k-1} h^{k}[h, g]^{k(k-1) / 2}\right) & \text { (By basic group axioms.) } \\
& =g[h, g] g h\left(g^{k-1} h^{k}[h, g]^{k(k-1) / 2}\right) & \text { (By definition of }[g, h] .) \\
& =g^{2} h[h, g]\left(g^{k-1} h^{k}[h, g]^{k(k-1) / 2}\right) & \text { (By (2).) } \\
& =g^{2} h g^{k-1} h^{k}[h, g]^{k(k-1) / 2+1} & \text { (By (2).) } \\
& =g^{\ell+1} h g^{k-\ell} h^{k}\left([h, g]^{k(k-1) / 2+\ell}\right) & \text { (By repeatedly applying (2).) } \\
& =g^{k+1} h^{k+1}\left([h, g]^{k(k+1) / 2}\right) & \text { (Taking } k=\ell .)
\end{array}
$$

Thus, the assertion holds for all k.
3. Let G be a non-abelian group of order p^{3}, where p is an odd prime.
(a) Show that $|Z(G)|=p$.
(b) Show that the derived group $[G, G]=Z(G)$.
(c) Show that the map $g \stackrel{\varphi}{\mapsto} g^{p}$, for all g, defines a homomorphism $\varphi: G \rightarrow Z(G)$.

Solution. (a) By the Class Equation, we have

$$
\begin{equation*}
p^{3}=|Z(G)|+\sum_{i=1}^{r}\left[G: C_{G}\left(g_{i}\right)\right] \tag{3}
\end{equation*}
$$

where the g_{i} are representatives of the distinct conjugacy classes of G not contained in $Z(G)$. By Lagrange's Theorem and the fact that $g_{i} \notin$ $Z(G)$, we have that $\left[G: C_{G}\left(g_{i}\right)\right]=p$ or p^{2}. Thus, we have that p divides $\sum_{i=1}^{r}\left[G: C_{G}\left(g_{i}\right)\right]$ and since $p \mid p^{3}$, it follows from (3) that $p||Z(G)|$. Therefore, by Lagrange's theorem, we have $|Z(G)| \in\left\{p, p^{2}, p^{3}\right\}$.
Clearly, $|Z(G)| \neq p^{3}$, for this would imply that G is abelian. Suppose that $|Z(G)|=p^{2}$, then $|G / Z(G)|=p$, and hence $G / Z(G)$ is cyclic, which would imply that G is abelian (see Quiz 2 of MTH 203). Therefore, by elimination we can infer that $|Z(G)|=p$.
(b) Since $|G / Z(G)|=p^{2}$ (by 3 (a)), and a group of order p^{2} is abelian (Verify!), it follows that $G / Z(G)$ is abelian. Thus, by Problem 2(b) of the MTH 203 Final exam we have that $[G, G] \leq Z(G)$. Since, $|Z(G)|=p$ and G is non-abelian, it follows that $Z(G)=[G, G]$.
(c) The map $\varphi: G \rightarrow G: g \stackrel{\varphi}{\mapsto} g^{p}$ is clearly well-defined (Verify!). Furthermore, for $g, h \in G$, we have:

$$
\begin{array}{rlrl}
\varphi(g h) & =(g h)^{p} & \text { (By definition of } \varphi .) \\
& =g^{p} h^{p}[h, g]^{p(p-1) / 2} & & \text { (Since }[h, g] \in Z(G) \text { and by Problem 2.) } \\
& =g^{p} h^{p}, & \text { (Since }[h, g] \in Z(G) \text { and }|Z(G)|=p .)
\end{array}
$$

from which it follows that φ is a homomorphism.
Now, for any $g, h \in G$, we have $\varphi([g, h])=[\varphi(g), \varphi(h)]$, from which it follows that $\varphi([G, G]) \leq[G, G]$. Thus, as $[G, G] \unlhd G, \varphi$ induces a homomorphism

$$
\bar{\varphi}: G /[G, G] \rightarrow G /[G, G]: g[G, G] \stackrel{\bar{\varphi}}{\mapsto} g^{p}[G, G] .
$$

Since $G /[G, G]$ is an abelian group (as $|G /[G, G]|=p^{2}$), we have $g^{p}[G, G]=(g[G, G])^{p}$. Furthermore, as $G /[G, G]$ is non-cyclic (since
G is non-abelian), it follows from the Lagrange's theorem that every non-trivial element of $G /[G, G]$ has order p. Consequently, we have

$$
g^{p}[G, G]=(g[G, G])^{p}=[G, G],
$$

from which it follows that $g^{p} \in[G, G]$. Therefore, for any $g \in G$, we have $g^{p} \in[G, G]$, or in other words, $\varphi(G) \leq[G, G]$.
4. Show that a group G of order 24 is non-simple.

Solution. The action $G \curvearrowright G / H$ by left-multiplication induces a permutation representation $\psi: G \rightarrow S(G / H) \cong S_{3}$ (since $|G / H|=3$). By the First Isomorphism Theorem, we have

$$
G / \operatorname{ker} \psi \cong \psi(G)
$$

Since $\psi(G) \leq S(G / H)$, by the Lagrange's theorem, $|G / \operatorname{ker} \psi|$ must divide 6 , which implies that

$$
\begin{equation*}
4||\operatorname{ker} \psi| . \tag{4}
\end{equation*}
$$

Moreover, for any $g^{\prime} \in \operatorname{ker} \psi$, we have $\psi\left(g^{\prime}\right)=i d_{G / H}$, which implies that

$$
g H=g^{\prime} \cdot(g H)=\left(g^{\prime} g\right) \cdot H,
$$

which implies that $\left(g^{\prime} g\right) g^{-1}=g^{\prime} \in H$. Thus, it follows that ker $\psi \leq H$, and so we have

$$
\begin{equation*}
|\operatorname{ker} \psi| \mid 8 . \tag{5}
\end{equation*}
$$

From (4) and (5), we have $|\operatorname{ker} \psi| \in\{4,8\}$ and thus $\operatorname{ker} \psi$ is a proper normal subgroup of G showing that G is non-simple.

