
Midterm solutions

1. Let G be a finite group and H,K CG such that H ∩K = {1}.

(a) Show that every element of HK can be written uniquely as a
product hk for some h ∈ H and k ∈ K.

(b) Show that HK ∼= H ×K.

(c) Show that for an odd n ≥ 3, D4n
∼= D2n × Z2.

Solution. (a) We know from proof of Lesson Plan 2.2 (xiii) that since
|H ∩ K| = 1, we have |HK| = |H||K|, and the assertion follows.
(Verify!)

(b) We know from 3.2 (iv) of the Lesson Plan that HK ≤ G. Consider
the map

ϕ : H ×K → HK : (h, k)
ϕ7−→ hk.

Then ϕ is clearly well-defined since for (h1, k1), (h2, k2) ∈ H × K, we
have:

(h1, k1) = (h2, k2) =⇒ h1 = h2 and k1 = k2 =⇒ h1k1 = h2k2.

Moreover, since H,K CG, for h ∈ H and k ∈ K, we have

h(kh−1k−1) ∈ H and (hkh−1)k−1 ∈ K,

and so it follows that

hkh−1k−1 ∈ H ∩K.

As H ∩K = {1}, we have hkh−1k−1 = 1, which implies that

hk = kh,∀h ∈ H and k ∈ K. (1)

Now, given (h1, k1), (h2, k2) ∈ H ×K, we have:

ϕ((h1, k1)(h2, k2)) = ϕ(h1h2, k1k2)
= h1h2k1k2 (By definition of ϕ.)
= h1k1h2k2 (By (1) above.)
= ϕ((h1, k1))ϕ((h2, k2)),
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which shows that ϕ is a homomorphism. Furthermore, as ϕ is clearly
bijective from 1 (a), we have HK ∼= H ×K.

(c) Consider the subgroups H = 〈r2, s〉 and K = 〈rn〉 = {1, rn} of
D4n = 〈r, s〉. Then H CD4n since [D4n : H] = 2 (Verify!) and further-
more, as K = Z(D4n) (Verify!), we have K CD4n. The assertion now
follows from 1 (b).

2. Let G be a group and let g, h ∈ G such that g and h both commute
with [g, h] = ghg−1h−1. Then show that (gh)n = gnhn[h, g]n(n−1)/2.

Solution. We show this by inducting on n. To begin with, we observe
that since g, h both commute with [g, h], it follows that:

h and g both commute with [g, h]−1 = [h, g]. (2)

When n = 2, we have:

(gh)2 = ghgh
= ghg(h−1g−1gh)h (By definition of [h, g])
= g(hgh−1g−1)(gh2) (By basic group axioms.)
= g([h, g])(gh2) (By definition of [h, g].)
= g2h2[h, g] (By (2).)

Thus, the assertion holds for n = 2.

Now, assuming that the result holds for n = k, we prove the assertion
for n = k + 1. We have:

(gh)k+1 = gh(gh)k

= gh(gkhk[h, g]k(k−1)/2) (By inductive hypothesis.)
= ghg(gk−1hk[h, g]k(k−1)/2) (By basic group axioms.)
= g[h, g]gh(gk−1hk[h, g]k(k−1)/2) (By definition of [g, h].)
= g2h[h, g](gk−1hk[h, g]k(k−1)/2) (By (2).)
= g2hgk−1hk[h, g]k(k−1)/2+1 (By (2).)
= g`+1hgk−`hk([h, g]k(k−1)/2+`) (By repeatedly applying (2).)
= gk+1hk+1([h, g]k(k+1)/2) (Taking k = `.)

Thus, the assertion holds for all k.

3. Let G be a non-abelian group of order p3, where p is an odd prime.

(a) Show that |Z(G)| = p.
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(b) Show that the derived group [G,G] = Z(G).

(c) Show that the map g
ϕ7−→ gp, for all g, defines a homomorphism

ϕ : G→ Z(G).

Solution. (a) By the Class Equation, we have

p3 = |Z(G)|+
r∑

i=1

[G : CG(gi)], (3)

where the gi are representatives of the distinct conjugacy classes of G
not contained in Z(G). By Lagrange’s Theorem and the fact that gi /∈
Z(G), we have that [G : CG(gi)] = p or p2. Thus, we have that p divides∑r

i=1[G : CG(gi)] and since p | p3, it follows from (3) that p | |Z(G)|.
Therefore, by Lagrange’s theorem, we have |Z(G)| ∈ {p, p2, p3}.
Clearly, |Z(G)| 6= p3, for this would imply that G is abelian. Suppose
that |Z(G)| = p2, then |G/Z(G)| = p, and hence G/Z(G) is cyclic,
which would imply that G is abelian (see Quiz 2 of MTH 203). There-
fore, by elimination we can infer that |Z(G)| = p.

(b) Since |G/Z(G)| = p2 (by 3 (a)), and a group of order p2 is abelian
(Verify!), it follows that G/Z(G) is abelian. Thus, by Problem 2(b)
of the MTH 203 Final exam we have that [G,G] ≤ Z(G). Since,
|Z(G)| = p and G is non-abelian, it follows that Z(G) = [G,G].

(c) The map ϕ : G → G : g
ϕ7−→ gp is clearly well-defined (Verify!).

Furthermore, for g, h ∈ G, we have:

ϕ(gh) = (gh)p (By definition of ϕ.)
= gphp[h, g]p(p−1)/2 (Since [h, g] ∈ Z(G) and by Problem 2.)
= gphp, (Since [h, g] ∈ Z(G) and |Z(G)| = p.)

from which it follows that ϕ is a homomorphism.

Now, for any g, h ∈ G, we have ϕ([g, h]) = [ϕ(g), ϕ(h)], from which
it follows that ϕ([G,G]) ≤ [G,G]. Thus, as [G,G] E G, ϕ induces a
homomorphism

ϕ̄ : G/[G,G]→ G/[G,G] : g[G,G]
ϕ̄7−→ gp[G,G].

Since G/[G,G] is an abelian group (as |G/[G,G]| = p2), we have
gp[G,G] = (g[G,G])p. Furthermore, as G/[G,G] is non-cyclic (since
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G is non-abelian), it follows from the Lagrange’s theorem that every
non-trivial element of G/[G,G] has order p. Consequently, we have

gp[G,G] = (g[G,G])p = [G,G],

from which it follows that gp ∈ [G,G]. Therefore, for any g ∈ G, we
have gp ∈ [G,G], or in other words, ϕ(G) ≤ [G,G].

4. Show that a group G of order 24 is non-simple.

Solution. The action G y G/H by left-multiplication induces a per-
mutation representation ψ : G→ S(G/H) ∼= S3 (since |G/H| = 3). By
the First Isomorphism Theorem, we have

G/ kerψ ∼= ψ(G).

Since ψ(G) ≤ S(G/H), by the Lagrange’s theorem, |G/ kerψ| must
divide 6, which implies that

4 | | kerψ|. (4)

Moreover, for any g′ ∈ kerψ, we have ψ(g′) = idG/H , which implies
that

gH = g′ · (gH) = (g′g) ·H,

which implies that (g′g)g−1 = g′ ∈ H. Thus, it follows that kerψ ≤ H,
and so we have

| kerψ| | 8. (5)

From (4) and (5), we have | kerψ| ∈ {4, 8} and thus kerψ is a proper
normal subgroup of G showing that G is non-simple.
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